White matter hyperintensities correlate with neuropsychiatric manifestations of Alzheimer's disease and frontotemporal lobar degeneration

Annual Scientific Meeting - Canadian Geriatric Society

Philippe Desmarais, MD, FRCPC, MHSc (c)

Clinical and Research Fellow in Cognitive Neurology Master Candidate in Translational Research University of Toronto

White matter hyperintensities correlate with neuropsychiatric manifestations of Alzheimer's disease and frontotemporal lobar degeneration

Annual Scientific Meeting - Canadian Geriatric Society

<u>Philippe Desmarais, MD^{1,2,3,4}</u>, Catherine Miville, MD^{2,3,4}, Julia Keith, MD⁵, Krista Lanctôt, Ph.D.^{1,4}, Nathan Herrmann, MD^{1,4}, Sandra E. Black, MD^{2,3,4}, Mario Masellis, Ph.D., MD^{2,3,4}

- 1. Geriatric Psychiatry, Sunnybrook Health Sciences Centre (SHSC), Toronto, Canada
- 2. Cognitive & Movement Disorders Clinic, SHSC, Toronto, Canada
- 3. L.C. Campbell Cognitive Neurology Research Unit, SHSC, Toronto, Canada
- 4. Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- 5. Neuropathology, SHSC, Toronto, Canada

Presenter Disclosure

Philippe Desmarais, MD, FRCPC, MHSc (c)

Relationships with financial sponsors: none

Presenter Disclosure

Philippe Desmarais, MD, FRCPC, MHSc (c)

- Financial support from: Fondation du Centre Hospitalier de l'Université de Montréal in the form of a postdoctoral grant for my training in cognitive neurology.
- In-kind support: None
- Potential for conflicts of interest: None

Mitigating Potential Bias

Philippe Desmarais, MD, FRCPC, MHSc (c)

 The sponsors of the study had no role in the study design, data collection, data analysis, or data interpretation.

Background

Alzheimer's disease (AD)

- Most prevalent neurocognitive disorder with advancing age
- Neuropsychiatric manifestations are frequent and distressing

Frontotemporal lobar degeneration (FTLD)

- Multiple neurodegenerative pathologies with overlapping clinical features
- Various cognitive, neuropsychiatric, and motor manifestations
- Clinical phenotypes:
 - Behavioural variant frontotemporal dementia (bvFTD);
 - Primary Progressive Aphasia (PPA);
 - Corticobasal syndrome (CBS);
 - Progressive supranuclear palsy (PSP).

Background

Gray matter atrophy and clinical manifestations

- Mesial temporal atrophy → episodic memory and learning deficits¹
- Orbitofrontal atrophy → disinhibition, impulsivity²

White matter changes

- White matter hyperintensities (WMHs) were associated in AD with³:
 - → executive dysfunction
 - \rightarrow mental processing speed impairment
 - → memory deficits

¹ Bruen *et al., Brain*, 2008; ² Zamboni *et al., Neurology*, 2008; ³ Ramirez *et al., Alzheimer's Research & Therapy*, 2014

P. Desmarais

To better understand the relationships between regional white matter hyperintensities and neuropsychiatric symptoms in patients with sporadic Alzheimer's disease and frontotemporal dementia and related disorders.

Study Design

Cohort series from the Sunnybrook Dementia Study

- Ongoing longitudinal study of subjects with/without cognitive impairment
- Subjects undergo extensive assessments:
 - Neuropsychological batteries: MMSE, MoCA, DRS, and various other tests;
 - Neuropsychiatric batteries: NPI, BEHAVE-AD;
 - Genetic testing: APOEε genotype, others;
 - Brain imaging: standardized MR and SPECT imaging.

Case Selection

Retrospective selection and analysis of autopsy-confirmed cases of:

- Alzheimer's Disease (AD);
- Frontotemporal dementia (FTD) due to:
 - Tau proteinopathy (i.e. Pick's disease);
 - TDP-43 proteinopathy;
- Progressive supranuclear palsy (PSP);
- Corticobasal degeneration (CBD).

As well as healthy controls (HC) for comparison purposes.

Data Collection

- Demographic data: sex, age, education level
- Comorbidities: vascular risk factors and cardiovascular events
- Disease: age at onset, age at assessment, pathology findings
- Baseline neuropsychological & neuropsychiatric results:
 - Neuropsychiatric inventory (NPI): total score, caregiver score, and 12 subscale items
- Baseline brain imaging volumetrics obtained on a 1.5 Tesla GE Signa system:
 - T1-, T2-, and PD-weighted axial cuts;
 - 3 mm slice thickness.

Imaging Analysis

- MR imaging processing included:
 - Segmentation and parcellation procedures¹;
 - Volumetrics for regional and whole-brain regions;
 - Values adjusted for total intracranial volume (TIV).

Segmentation and Lesion Explorer segmentation

SABRE Parcellation

¹ Ramirez et al., *NeuroImage*, 2011

Data Analysis

- Linear regressions:
 - dependent variables = items of the NPI;
 - predictors = regional WMH volumes;
 - covariates = age, sex, educational level, and corresponding regional GM volumes
- Statistical analyses were performed with IBM® SPSS ® Statistics 24.0

Identified Cases

Demographic and Clinical Characteristics

Characteristic	FTLD-TDP 43 FTD (n = 17)	FLTD-tau FTD (n = 10)	FTLD-tau CBD (n = 11)	FTLD-tau PSP (n = 15)	AD (n = 15)	HC (n = 35)	P - value*
Female, n (%)	8 (47%)	4 (40%)	8 (73%)	6 (40%)	5 (33%)	14 (40%)	0.449
Hand dominance, R/L/A	16/0/1	7/2/1	10/1/0	13/1/1	15/0/0	16/0/1	0.512
Education in years, mean (SD)	14.4 (3.3)	15.4 (4.1)	13.5 (3.2)	15.3 (3.2)	16.0 (5.5)	14.4 (3.3)	0.465
Age at baseline, mean (SD)	66.8 (9.5)	67.4 (9.6)	67.4 (6.6)	71.4 (5.3)	69.1 (10.0)	71.2 (7.8)	0.381
Age at onset of symptoms, mean (SD)	63.6 (9.3)	63.5 (11.1)	63.9 (6.0)	68.3 (5.8)	65.6 (10.5)	••	0.549
Disease duration, mean (SD)	3.2 (1.4)	3.9 (3.7)	3.6 (1.7)	3.1 (1.7)	3.6 (2.2)		0.881
MMSE (/30), mean (SD)	21.8 (7.0)	16.9 (10.6)	21.9 (5.8)	24.1 (6.2)	19.9 (6.4)	28.9 (0.9)	<0.0001
Genotype APOE ɛ4+, n/N (%)	6/12 (50%)	1/9 (11%)	0/8 (0%)	2/12 (17%)	6/13 (46%)	2/6 (33%)	0.067
Vascular risk factors, n (%)							
Hypertension	5 (29%)	2 (20%)	3 (27%)	5 (33%)	4 (27%)	9 (26%)	0.988
Hyperlipidemia	4 (24%)	0 (0%)	3 (27%)	2 (13%)	6 (40%)	1 (3%)	0.008
Diabetes mellitus	0 (0%)	1 (10%)	2 (18%)	0 (0%)	0 (0%)	0 (0%)	0.018

Data are n (%) and mean (SD). All percentages were rounded to the nearest whole number.

^{*} P-value for One-Way ANOVA.

16

Neuropsychiatric symptoms at baseline

Neuropsychiatric symptoms at baseline

Results Volumetrics at baseline

Healthy controls

Results Volumetrics at baseline

Neurodegenerative disorders

White Matter Hyperintensities

20 P. Desmarais

White Matter Hyperintensities

21

Results Clinico-radiological Correlations

Anxiety & WMH:

Results Clinico-radiological Correlations

Euphoria & WMH:

Results Clinico-radiological Correlations

Eating Changes & WMH:

24 P. Desmarais

Discussion

Highlights & Interpretation

- FTD due to TDP-43+ was associated with significant increased in total WMHs:
 - Progranulin mutation linked to WMHs¹
- WMH distribution was different between AD and FTLD pathologies:
 - More frontotemporal regions for TDP-43+
 - More periventricular regions (anteriorly and posteriorly) in AD
- Specific regions of WMHs correlated with specific neuropsychiatric symptoms:
 - Previous positive correlations in psychiatric disorders, such as depression² and bipolar disorder³
 - White matter changes in frontal region linked to frontostriatal dysfunction⁴

25 P. Desmarais

 ¹ Caroppo et al., JAMA Neurology, 2014; ² Firbank, et al., American Journal Geriatric Psychiatry, 2004;
³ Tighe et al., Bipolar Disorder, 2012; ⁴ MacFall et al., Biological Psychiatry, 2000

Discussion

Strengths

- Large cohort of autopsy-confirmed cases of FTLD
- Quantitative measures of white matter hyperintensities

Limitations

- Underpowered for some subgroup comparisons
- Correlation relationships ≠ causation relationships
 - WMHs → neuropsychiatric sx vs. neuropsychiatric sx → WMHs ?

Discussion

Future Directions

WMH volumetrics could be used as:

- Diagnostic biomarkers to differentiate between FTD-tau, FTD-TDP-43, and AD pathologies
- Surrogate markers for pharmacological trials
- Potential predictive markers for clinical response to psychotropic medications

Sunnybrook BrainLab

Imaging Lab Manager

Christopher Scott

Projects Coordinator

Sabrina Adamo

Melissa Holmes

Vanessa Yhap

Jen Bray

Database Coordinator

Research Coordinator

My Clinical & Research Supervisors at Sunnybrook Health Sciences Centre

Cognitive Neurology

- Mario Masellis, MD, MSc, PhD
- Sandra E. Black, MD

Geriatric Psychiatry

• Nathan Herrmann, MD

Neuropathology

Julia Keith, MD

Pharmacology

Krista Lanctôt, PhD

Clinical Fellow in Cognitive Neurology

Catherine Miville, MD

Clinical Team

- Areti Apatsidou, MSc
- Karina Subhanie

Others

- Quoc Dinh Nguyen, MD, MA, MPH, PhD (c)
- Sylvain G. Bélisle, BA

Canadian Institutes of Health Research -Institute of Aging

Canadian Geriatric Society

